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affine constraints. A dual problem is constructed and solved by applying a fast gradient method. The
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oretical substantiation in the required generality are presented.
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1. INTRODUCTION

In this paper, we generalize the results of [1] (including an improvement of the convergence rate esti-
mate for the method therein), where a technique was proposed for solving an entropy-linear programming
(ELP) problem. Specifically, its solution was recovered (with the help of explicit formulas) from the solu-
tion of a specially regularized dual problem. This work develops the ideas of [2–13], where various primal-
dual methods were proposed for a broad class of problems. The term “primal-dual” was coined in [5] for
methods in which the solution of the primal (dual) problem is recovered (with the same accuracy but with-
out considerable additional effort) from the solution of the corresponding dual (primal) problem. To make
this paper self-contained, we tried to present all necessary derivations, although some of them are not
original.

In Section 2, following [14], we describe a fast gradient method. In contrast to [1], we examine its pri-
mal-duality [2] and the following property: the sequence of points generated by the method lies in the ball
centered at the solution of radius equal to the distance from the starting point of the method to the solution
of the problem. Both these properties are used in Section 3 to substantiate a technique for recovering the
solution of the primal problem (of minimizing a strongly convex function of simple structure under affine
constraints) from the sequence generated by the method in the dual space. At the end of Section 3, we
describe a direct generalization of the construction from [1] associated with the regularization of the dual
problem. This generalization does not require that the method be primal-dual, but leads to a somewhat
slower convergence rate. Specifically, as applied to various ELP problems, the method proposed in this
paper finds solutions faster by several orders of magnitude than the method from [1].
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2. PRIMAL-DUALITY OF THE FAST GRADIENT METHOD
Consider the convex optimization problem

(1)

By the solution of this problem, we mean  that such

,

where  is an optimal value of the functional in problem (1) and  is the solution of problem
(1). Define the set
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i.e.,

(4)

For nonsmooth problems, estimate (3) is sharp up to a multiplicative constant [15] (here and below,
talking about the sharpness of estimates, we assume that the space in which optimization is performed has
a sufficiently high dimension, i.e., the number of iteration steps to be executed in the method does not
exceed the space dimension). However, if the gradient of  is additionally Lipschitz continuous, i.e.,

,

where  (see (6)), then

. (5)

This inequality is a formal representation of the following simple geometric fact: if we draw the tangent to
the function  at the point , i.e.,

,

and use this tangent to construct the parabola

,

then the latter majorizes , i.e.,

.

Specifically, this inequality holds at the minimum point of the parabola,

.

When the argument passes from the point  to the parabola’s minimum point, the parabola increases by

.

Therefore, we obtain inequality (5), which allows us to refine the above argument. As before, we write
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Remark 1. The fact that  depends only on  and/or  is a consequence of the
П-theorem from the theory of dimensions [16]. Introducing the accuracy

,

we can show that there are only two (independent) dimensionless quantities in terms of the parameters
introduced, namely,

By the П-theorem, any dimensionless variable has to be functionally expressed in terms of these two
(basic) quantities. Specifically,

.

When the Lipschitz continuity of the gradient cannot be guaranteed, the situation simplifies to

.

Obtained by method (2), estimate (3) corresponds to this formula. Moreover, as was noted above, this
estimate is sharp in the class of nonsmooth convex problems. Unfortunately, the convergence rate esti-
mate obtained for method (2) with the step  ceases to be optimal in the smooth case.

Incidentally, the П-theorem also implies that the stepsize  in method (2) in the nonsmooth case has
to be calculated using the formula

which can be derived from by the above one

by expressing  in terms of  with the help of (3) and setting

.

In the smooth case,  is determined by the relation

,

while, in the stochastic case [4] (the gradient is replaced by a stochastic gradient with variance ), by the
relation

.

If the gradient is Lipschitz continuous, the above convergence rate estimate can be improved [15] (e.g.,
by using the conjugate gradient method [15, 17]). The same follows from local convergence rate estimates
of the heavy ball method [17]. Among the wide variety of “accelerated methods” that converge according
to lower bounds, we distinguish the fast gradient method proposed by Yu.E. Nesterov in his candidate’s
dissertation in 1983. In addition to the fact that it was one of the first methods (making no use of auxiliary
one- or two-dimensional optimization [15]) whose global convergence was rigorously proved on the basis
of lower bounds (in the smooth case), the method was found to have good properties of type (6). However,
the most important property to be used in this paper is its primal-duality. This method was further devel-
oped and applied in Nesterov’s doctoral dissertation [5].

Let us construct a fast gradient method (FGM). In many respects, we follow the way of understanding
the FGM proposed recently in [14]. Nevertheless, we need to obtain property (6) and primal-duality from
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this argument. Whether or not the FGM has these properties was not examined in [14], so all the neces-
sary arguments will be presented below to the required degree of detail.

Preliminarily, we define two numerical sequences of steps :

Explicit formulas can also be written. Below, we will use a simplified version of these sequences [14]
defined as

In this case,

,

FGM (x0 = y0 = z0),

1. ;

2. ;
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Returning to formula (7), we show that the FGM is primal-dual. For this purpose, (7) is rewritten for
the simplified stepsize selection version:

,

i.e.,

, (9)

where

.

In fact, it is inequality (9) that allows us to recover the solution of the primal problem from that of the dual
one by applying the FGM in the next section.

Below is the main result of this section.

Theorem 1. Suppose that the functional of problem (1) has the property

, . (10)

Then the FGM generates a sequence of points  that satisfies relations (8) and (9). Moreover, for-
mula (9) can be rewritten as
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tion problem (1) is solved on an unbounded set, the parameters involved in the convergence rate estimates
are determined by the distance from the starting point to the solution. Thus, the entire iterative process
belongs to the (Euclidean) ball centered at the solution of radius equal to the distance from the starting
point to the solution. Since this distance is usually not known in advance, it may seem that this remark is
of low value. However, we will show in the next section that this remark plays an important role in the sub-
stantiation of the proposed primal-dual approach (although there is another line of reasoning, which does
not rely on a condition of type (8) [18]). Interestingly, if the solution of problem (1) is not unique (the

solution set is denoted by ), then  can be understood as .

Remark 3. Theorem 1 can be extended to the case where the set on which optimization is performed
(optimization set) does not coincide with the entire space, instead being, for example, a nonnegative ort-
hant or a simplex. In the general case, this requires that a prox-structure [5, 19] other than the Euclidean
one (which was used above) be introduced into the problem. As a result, the presentation becomes some-
what more complicated. Specifically, the stepsizes in the FGM have to be other than those in the direct
gradient method, namely, their proximal versions have to be used [4]. To the best of our knowledge, this
has been performed (in the generality of Theorem 1) only for the Euclidean prox-structure, but with arbi-
trary optimization sets.

Remark 4. Actually, the construction described above can be extended (with the preservation of the
main result—Theorem 1) to composite optimization problems [19, 20] and to problems in which the con-
stant  is not known, but has to be chosen in the course of the solution process (see [5, 19]). Additionally,
relying on the FGM and the remark made above, we can construct a corresponding version of the univer-
sal method from [21]. All the above generalizations can also be performed using the concept of an inexact
oracle [4, 11, 22–25].
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3. APPLICATION TO THE MINIMIZATION OF A STRONGLY CONVEX FUNCTIONAL
OF SIMPLE STRUCTURE UNDER AFFINE CONSTRAINTS

Consider the problem

, (11)

where  is a 1-strongly convex function in the p-norm . Consider the dual problem

. (12)

In many important applications, the basic contribution to the computational complexity of the inner
maximization problem is made by the multiplication  ( ). For example, this occurs for separable
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.

By the definition of  (see (12)) and , inequality (14) can be rewritten as

,

which is similar to the argument used in [7, Section 3]. Taking into account

,

we obtain

,

i.e.,
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iteration steps.
Remark 5. Note that the approach to the simultaneous solution of the primal and dual problems

involves the unknown parameter R. However, this parameter is not involved in the algorithm or its stop-
ping criterion. It appears only in the estimate for the number of iterations. Unfortunately, this result can
rarely be achieved. It is nontrivial that we managed to achieve it in this context. Usually, in solving a dual
problem, the optimization set (which is, as a rule, the entire space or the direct product of the space and
the nonnegative orthant) is artificially compactified [2, 3, 11]. As a result, methods are used that require
the projection onto a ball of beforehand unknown radius. This difficulty (the size of the dual solution is
not known) is usually overcome using a restart procedure [1, 4, 24], which usually increases the number
of iteration steps by at least one order of magnitude, or by applying Slater relaxation, which is frequently
even more expensive in terms of the required number of iteration steps (see [1]).

Remark 6. Unfortunately, in some applications,  is only strictly (but not strongly) convex. In this
case (although the dual problem is smooth) nothing can be said about the Lipschitz constant for the gra-
dient, which is explicitly involved in every FGM step. As was noted above, this difficulty is resolved by
adaptive selection of L and, in a more general case (when the smoothness of  cannot be guaranteed)
by applying a universal method (see [11, 20, 24]). Nevertheless, how well the above-described construc-
tions work as applied to a smooth dual problem (on an unbounded set) when the Lipschitz constant is not
uniformly bounded (on this set) has earlier remained an open question. Indeed, assuming that the error
of the method in iteration can be larger than the initial error and that this iteration error depends on the
smoothness properties of the functional, we obtain a vicious circle. This indeed occurs in the case of inac-
curate estimation. However, as was shown above for deterministic problem formulations, a suitable choice
of primal-dual methods makes it possible to avoid this difficulty in a natural way, i.e., without using (con-
ventional) artificial compactification, which leads to additional costs on restarts.

Remark 7. The class of problems to which the above-described approach applies can be significantly
expanded, for example, if problem (11) admits inequality constraints of the form  or, in a more gen-
eral case, of the form , where the cone K has a simple dual description [26]. Moreover, instead
of problem (11), we can consider the minimization of a functional having a Legendre representation of
form (12) (see [24]). In this case, minimization in  can be performed over an arbitrary convex set.

Remark 8. When the dual space is of low dimension, the FGM can be replaced by the ellipsoid method
(which does not require the smoothness of the dual functional). This method is also primal-dual [3]. In
the context of this construction, interesting examples appear when the dimension of the primal space is
huge, but there is a linear minimization oracle that (despite the huge dimension of the primal space) effi-
ciently calculates the gradient of the dual functional [9, 10, 27].

Remark 9. It is useful to note that, in many important cases, the approach described in this section
(especially in the context of Remark 8) can be used to solve the problem of finding a gradient mapping,
which arises (in projection onto a feasible set of rather complex structure) at every iteration step in most
iterative methods [3, 5, 19]. In this case, the general divide-and-conquer idea as applied to the numerical
solution of convex optimization problems has the form of an iterative process with a simpler problem (than
the original one) solved at every step. The degree of difficulty of the problem to be solved at every step and
the number of such steps can be varied. A good example is composite optimization [19, 20]. Some of the
complexity of the problem formulation (in the form of a composite) is transferred completely (without lin-
earization) to the problem to be solved at every iteration step. If the composite is fairly good, this operation
does not have a large effect on the cost of an iteration step, but can substantially reduce the number of iter-
ation steps (e.g., for a nonsmooth composite). Other examples concerning this subject can be found in [11,
12, 24, 25]). Here, the general line of reasoning can be roughly described as follows. As a rule, any com-
plication of iteration leads to a reduced number of iteration steps. On the other hand, a single iteration step
always involves the computation (updating) of the gradient or its (say, stochastic) analogue used in the
method. For deterministic methods involving the gradient, the basic cost of an iteration step is formed by
the computation of this gradient (as a rule, this means the multiplication of a matrix and a vector, i.e.,

 arithmetic operations). After the gradient has been computed, an iteration step requires at most
 arithmetic operations. Thus, there is a rather large gap, which can cover additional compu-

tations transferred from the formulation of the problem to every step in hope of reducing the number of
steps. Specifically, if we consider the problem (see [8, 25])

⎧ ⎫
⎨ ⎬ε ε⎩ ⎭�
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with a sufficiently large , then the strong convexity of the entropy composite has to be taken into
account. At every iteration step, the usual FGM in the composite version as applied to this problem
requires solving a nearly separable problem. The constructions described in this section turn out to be
fairly useful for solving such a problem. Moreover, this problem is presented here, because, for a certain
parameter value , it becomes “equivalent” to the original problem (11) with an entropy-type func-
tional. These different ways of understanding the same problem were discussed in [8] (in terms of its for-
mulation and practical computations). Additionally, some constructions (similar to those described in this
section) were presented that make it possible to determine the parameter  at a low additional cost,
so that the above-noted correspondence takes place (see also [25]).

Remark 10 (PageRank and lower bounds). At first glance, the estimates given in Theorem 2 seem to lead
to contradictions. Let us explain this by using the following example [24].

The problem of finding  such that

is reduced to the smooth convex optimization problem

.

The convergence rate of the solution to this problem [15] satisfies the lower bound

which implies that, only for

,
we can guarantee the inequality

However, for special matrices, this lower bound can be improved. Consider the problem of finding a
PageRank vector [28] ( ), which can be written as

,

where  is the identity matrix. By the Perron–Frobenius theorem [28], the solution of this system with an
irreducible stochastic matrix  is unique and positive: . This system of equations can be reduced to
the degenerate convex optimization problem

.

Consider the dual problem for this one (since the system  is consistent, Fredholm’s theorem
implies that there is no  such that  and ; therefore, the dual problem has a finite solu-
tion):

Given the solution  of the dual problem (for example, with a minimum Euclidean norm)

,

we can recover the solution of the primal problem
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.
Additionally, if the dual problem is solved numerically by applying the FGM, then, by Theorem 2,

,

where

This seems to contradict the lower bound

.

However, it is important to recall [15] that this lower bound was established for all  (  is the dimen-
sion of the vector ) and it can be improved by applying the above procedure only if the matrix  is addi-
tionally assumed to satisfy the condition

,
which narrows down the class in which the lower bound

was obtained. In typical situations, it can be expected that , which hinders the fulfillment of the
required condition.

Remark 11. Certain nuances arise in an attempt to extend the results of this paper to the case where
only a stochastic gradient is available instead of the gradient. We do not discuss this case in detail, but note
that answers to many questions have been obtained for randomized componentwise methods [13]. Specif-
ically, the PageRank problem from Remark 10 can be solved using a direct accelerated componentwise
method or its dual. The estimates are as follows (see [13]):

(for the primal problem),

(for the dual problem).
Moreover, if the matrix  has  nonzero elements ( ), then one iteration step in both methods re-
quires, on average,  arithmetic operations. Without numerical experiments (relying only on the above
estimates), it is difficult to determine which approach is preferable (basically, because  is unknown).
This example is almost the only one where the computations can be organized so that the sparsity of the
problem is used to a full extent (an iteration step requires  arithmetic operations). Unfortunately,

since  has to be computed (updated), at least  arithmetic operations are usually executed per iter-
ation step [13]. However, there is another (simpler) method for recovering the solution of the primal prob-
lem from the solution of the dual one, which is more suitable for taking into account sparsity. This method
is described below.

Let us extend the approach described in this paper to the case where the dual functional in problem
(11) is μ-strongly convex (concave) in the 2-norm. For this purpose, it is sufficient that the gradient of the
functional in the primal problem have a uniformly bounded Lipschitz constant and the primal problem be
solved in the entire space [8, 13] (i.e., there are no constraints other than ). Such an example was
discussed in Remark 10. Let us use the restart technique (see, e.g., [5, 14, 25]), which, in this case, has the
following form (see Theorem 2; note that the primal-duality of the FGM is not used in this estimate):

.
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Choosing

,

we obtain

.

Using  as a starting point in the FGM, we again execute  iteration steps, etc. It is easy to see that, if the
accuracy  is desired for the function, then the number of such restarts in the FGM needs to be equal to

(here,  is the standard notation for the ceiling function; for example, ). Thus, the total number
of iteration steps executed by the FGM can be estimated as

.

At first glance, it seems that we then do not control

.

Actually, for problems with a Lipschitz continuous gradient,  can always (rather than only for
primal-dual methods) be controlled using inequality (5), namely,

(if , then, instead of the gradient , we can calculate a gradient mapping (see, e.g., [4, 5])).
However, the problem is that this inequality is typically rather rough. Indeed, in the -strongly convex
case,

.

If  (which is typical), then the use of inequality (5) may lead (and indeed leads [13]) to strongly
overstated estimates. However, if along with (5), we take into account the geometric convergence rate of
the FGM in view of strong convexity, then

,

where  denotes the sequence generated by the above-described FGM with restarts.
Let us describe a stopping criterion for the FGM with restarts. By the definition of , we have

,

whence

.

Thus, the stopping criterion has the form

(15)

Theorem 3. Suppose that problem (11) is solved by passing to problem (12) with a -strongly convex func-
tional in the 2-norm with the help of the formulas given above. Let the stopping criterion be given by (15). Then
the above-described FGM with restarts is guaranteed to terminate after at most

=
μ

8LN

− ≤ −�

2 20

22

1
* *2

Ny y y y

�

Ny N
ε

⎡ ⎛ ⎞⎤μ
⎜ ⎟⎢ ⎥ε⎢ ⎝ ⎠⎥

2

2log R

⋅⎡ ⎤⎢ ⎥ =⎡ ⎤⎢ ⎥0.2 1

⎡ ⎛ ⎞⎤μ
⎜ ⎟⎢ ⎥μ ε⎢ ⎝ ⎠⎥

2

2
8 log RL

( ) ( )− = ∇2 2Ax y b F y

( )∇ 2F y

( ) ( ) ( )∇ ≤ −2
2

1
*2

F y F y F y
L

≠( ) 0*F y ( )∇F y
μ

( ) ( ) ( ) ( )∇ ≤ − ≤ ∇
μ

2 2
2 2

1 1
*2 2

F y F y F y F y
L

μ � 1L

( ) ( ) ( ) ( )( ) ⎛ ⎞μ− = ∇ ≤ − ≤ μ −⎜ ⎟
⎝ ⎠

2

2 2
2 2 exp* 2 8

N N NAx y b F y L F y F y L R
L

{ }Ny
( )x y

( )( ) ( ) ( )+ − ≤, *g x y y Ax y b g x

( )( ) ( ) ( )− ≤ −2 2*g x y g x y Ax y b

( ) ( )− ≤ ε − ≤ ε�
2 2 2

, .N N Ny Ax y b Ax y b

μ

⎧ ⎡ ⎛ ⎞⎤ ⎡ ⎛ ⎞⎤⎫μ μ
⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥μ με ε⎩ ⎢ ⎝ ⎠⎥ ⎢ ⎝ ⎠⎥⎭�

4 2

2 22 2
2 28 8max log , logL R L RL L



1274

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 8  2017

ANIKIN et al.

iteration steps.

Remark 12. In fact, we have just described a rather general approach to solving a large number of prob-
lems via the transition to a smooth dual problem. It remains to be noted that the regularization 
is artificially introduced into the dual problem if the latter is not strongly convex [25]. Accordingly, restarts
with respect to  arise, since  is a priori unknown [1, 4]. Actually, it is this approach that was proposed
in [1] for solving an ELP problem. Theoretical estimates suggest that both methods have roughly the same
running time (the present one is slightly better), but the experiments in [18] showed conclusively that the
present method is faster than that from [1] by several orders of magnitude. The cause is that, in view of the
restarts in , a prescribed number of iteration steps (no less) have to be executed (at every restart step),
while the present method, first, does not require restarts (thus saving almost one order of magnitude) and,
second, terminates according to a more f lexible criterion (see Theorem 2), which admits fewer iteration
steps than suggested by the estimate. Numerical experiments show that, due to this circumstance, several
orders of magnitude are saved in the total running time of the new method.

Remark 13. Everything described above for the strongly convex case can be extended to arbitrary meth-
ods (not necessarily primal-dual), for example, to the conjugate gradient method or Newton’s method
and their modifications [17] (there is a general thesis due to A.S. Nemirovski that nearly any reasonable
numerical method is either primal-dual or has a corresponding modification; the primal-duality of many
important methods has been established in various works, but, to the best of our knowledge, this has not
been done for the conjugate gradient and Newton methods). Specifically, stopping criterion (15) is a gen-
eral technique for error control in the solution produced by an arbitrary method that simultaneously solves
primal and dual problems. As was noted above, when the dual problem is only smooth (which is required
for the validity of the presented arguments) but not strongly convex, available theoretical techniques for
methods with stopping criterion (15) typically yield strongly overstated convergence rate estimates. This
does not mean that these methods are poor, because, to the best of our knowledge, no accurate estimation
methods are available at present. The problem of theoretical substantiation is solved by regularizing the
dual problem (see Remark 12).

Remark 14. The above approach to obtaining FGM for strongly convex problems based on restarts in
the distance from the current point to the solution has a serious disadvantage. At every restart step, the
method has to execute a prescribed number of iterations, which is, as a rule, overestimated. An earlier ter-
mination is possible if there is a stopping criterion. However,  is usually not known. In practice, we
can try to monitor the norm of the gradient (in the general case, the norm of the gradient mapping) and
terminate the method when the square of this norm decreases by half. However, similar (sharp in order)
estimates for the resulting convergence rate have not yet been proved for this approach. A way out of this
situation is to replace the FGM with restarts by the FGM without restarts for strongly convex problems
[5] or, even better, by the FGM without restarts for strongly convex problems with an adaptively selected
Lipschitz constant for the gradient. Such a method (which was additionally continuous with respect to the
strong convexity parameter) was described, for example, in [30]. If the strong convexity parameter is not
known (see Remark 12), then, unfortunately, restarts cannot be avoided, but they are used only with
respect to this parameter and the exit from the last restart (which is the most expensive and makes the basic
contribution to the estimated total running time of the method) can be achieved (in contrast to the
approach described above) by monitoring the smallness of the norm of the gradient (gradient mapping).
Another method for improving the restart construction was proposed in [31].
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